4,745 research outputs found

    Elements of Ion Linear Accelerators, Calm in The Resonances, Other_Tales

    Full text link
    The main part of this book, Elements of Linear Accelerators, outlines in Part 1 a framework for non-relativistic linear accelerator focusing and accelerating channel design, simulation, optimization and analysis where space charge is an important factor. Part 1 is the most important part of the book; grasping the framework is essential to fully understand and appreciate the elements within it, and the myriad application details of the following Parts. The treatment concentrates on all linacs, large or small, intended for high-intensity, very low beam loss, factory-type application. The Radio-Frequency-Quadrupole (RFQ) is especially developed as a representative and the most complicated linac form (from dc to bunched and accelerated beam), extending to practical design of long, high energy linacs, including space charge resonances and beam halo formation, and some challenges for future work. Also a practical method is presented for designing Alternating-Phase- Focused (APF) linacs with long sequences and high energy gain. Full open-source software is available. The following part, Calm in the Resonances and Other Tales, contains eyewitness accounts of nearly 60 years of participation in accelerator technology. (September 2023) The LINACS codes are released at no cost and, as always,with fully open-source coding. (p.2 & Ch 19.10)Comment: 652 pages. Some hundreds of figures - all images, there is no data in the figures. (September 2023) The LINACS codes are released at no cost and, as always,with fully open-source coding. (p.2 & Ch 19.10

    An improved viscid/inviscid interaction procedure for transonic flow over airfoils

    Get PDF
    A new interacting boundary layer approach for computing the viscous transonic flow over airfoils is described. The theory includes a complete treatment of viscous interaction effects induced by the wake and accounts for normal pressure gradient effects across the boundary layer near trailing edges. The method is based on systematic expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds numbers, Reynolds infinity. Procedures are developed for incorporating the local trailing edge solution into the numerical solution of the coupled full potential and integral boundary layer equations. Although the theory is strictly applicable to airfoils with cusped or nearly cusped trailing edges and to turbulent boundary layers that remain fully attached to the airfoil surface, the method was successfully applied to more general airfoils and to flows with small separation zones. Comparisons of theoretical solutions with wind tunnel data indicate the present method can accurately predict the section characteristics of airfoils including the absolute levels of drag

    A comparative study of the nonuniqueness problem of the potential equation

    Get PDF
    The nonuniqueness problem occurring at transonic speeds with the conservative potential equation is investigated numerically. The study indicates that the problem is not an inviscid phenomenon, but results from approximate treatment of shock waves inherent in the conservative potential model. A new bound on the limit of validity of the conservative potential model is proposed

    A brief description of the Jameson-Caughey NYU transonic swept-wing computer program: FLO 22

    Get PDF
    A computer program for analyzing inviscid, isentropic, transonic flow past 3-D swept configurations is presented. Some basic aspects of the program are: (1) the free-stream Mach number is restricted only by the isentropic assumption; (2) weak shock waves are automatically located wherever they occur in the flow; (3) the finite-difference form of the full equation for the velocity potential is solved by the method of relaxation, after the flow exterior to the airfoil is mapped to the upper half plane; (4) the mapping procedure allows exact satisfaction of the boundary conditions and use of supersonic free stream velocities; (5) the finite difference operator is locally rotated in supersonic flow regions so as to properly account for the domain of dependence; and (6) the relaxation algorithm was stabilized using criteria from a time-like analogy

    Fluctuation properties of precipitation. Part VI: Observations of hyperfine clustering and drop size distribution structures in three-dimensional rain

    Get PDF
    In past work it is argued that rain consists of patches of coherent, physical drop size distributions passing in an unpredictable fashion for an unknown duration over a sensor. This leads to the detection both of correlations among drops and of clustering. While the analyses thus far support this characterization, in this final paper in this series, techniques are developed demonstrating that clustering of drops of a specific size in rain is occurring even on scales as small as a few centimeters. Moreover, using video disdrometer data processed to achieve high temporal resolution, it is shown that drops of different sizes are also cross correlated over times from 0.01 to several seconds. It is then shown that physical patches of drop size distributions (often exponential in form) exist and can be measured even over time periods as small as 2–3 s. Such distributions may be the result of enhanced drop interactions due to clustering or perhaps simply stochastic “accidents” brought about by some “clustering” mechanism. Since most drop spectra are measured over considerably longer intervals, however, observed distributions are likely probability mixtures of many short duration spectra. Such mixed distributions exhibit enhanced variance and curvatures reminiscent of gamma spectra often described in the literature. Thus, as measurement intervals increase, the form of the observed drop distributions apparently changes from an exponential-like distribution, to a mixture of distributions, finally returning once again to an exponential when the averaging is over very long intervals and a wide variety of conditions. It is also shown that for these data, much of the variability in rainfall rate arises due to concentration fluctuations rather than to changes in the average drop size. For completeness, it is also shown that the dimensionality of drop counts and rainfall rate are consistent with Euclidean scaling over distances from centimeters to kilometers. Finally, a specific example of drop clustering in wide sense statistically stationary rain is also given. These observations cannot be explained in terms of a nonhomogeneous Poisson process. Consequently, it appears most appropriate to characterize clustering and the structure of rain in terms of correlations and probability ruling discussed here and in previous papers in this series. This approach can be used to simulate rain numerically in order to explore not only the statistical properties of the rain itself, but also to achieve a better understanding of the effect of raindrop clustering and rainfall variability on a variety of topics, such as signal statistics and interpretations of remote sensing measurements

    Direct observations of coherent backscatter of radar waves in precipitation

    Get PDF
    In previous work, it was argued that a source of radar coherent scatter occurs in the direction perpendicular to the direction of wave propagation because of the presence of grids of enhanced particle concentrations with spatial periodicities in resonance with the radar wavelength. While convincing, the evidence thus far has been indirect. In this work the authors now present direct observations of radar coherent backscattered signals in precipitation in the direction of wave propagation. The theory is developed for the cross-correlation function of the complex amplitudes in the direction of propagation calculated for nearest neighbor range bins. Data are analyzed in snow and in rain. The results agree with the earlier conclusions in the previous work, namely that coherent scatter occurs in both rain and snow, that it is larger in snow than it is in rain, and that it can be significant at times

    Partially coherent backscatter in radar observations of precipitation

    Get PDF
    Classical radar theory only considers incoherent backscatter from precipitation. Can precipitation generate coherent scatter as well? Until now, the accepted answer has been no, because hydrometeors are distributed sparsely in space (relative to radar wavelength) so that the continuum assumption used to explain coherent scatter in clear air and clouds does not hold. In this work, a theory for a different mechanism is presented. The apparent existence of the proposed mechanism is then illustrated in both rain and snow. A new power spectrum Z( f ), the Fourier transform of the time series of the radar backscattered reflectivities, reveals statistically significant frequencies f of periodic components that cannot be ascribed to incoherent scatter. It is shown that removing those significant fs from Z( f ) at lower frequencies greatly reduces the temporal coherency. These lower frequencies, then, are associated with the increased temporal coherency. It is also shown that these fs are also directly linked to the Doppler spectral peaks through integer multiples of one-half the radar wavelength, characteristic of Bragg scatter. Thus, the enhanced temporal coherency is directly related to the presence of coherent scatter in agreement with theory. Moreover, the normalized backscattered power spectrum Z( f ) permits the estimation of the fractional coherent power contribution to the total power, even for an incoherent radar. Analyses of approximately 26 000 one-second Z( f ) in both rain and snow reveal that the coherent scatter is pervasive in these data. These findings present a challenge to the usual assumption that the scatter of radar waves from precipitation is always incoherent and to interpretations of backscattered power based on this assumption
    • …
    corecore